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Ordinary Differential Equations
Lectures notes

1 What is this course

The subject of differential equations can be described as the study of equations involving
derivatives. It can also be described as the study of anything that changes. The reason
for this goes back to differential calculus, where one learns that the derivative of a
function describes the rate of change of the function. Thus any quantity that varies can
be described by an equation involving its derivative, whether the quantity is a position,
velocity, temperature, population or volume.

There are three main ways to study differential equations. There are analytic meth-
ods, wherein a mathematical formula for a solution of a differential equation is obtained.
There are Numerical techniques, which provide an approximate solution, generally us-
ing a computer or programmable calculator. Differential Equations can also be studied
qualitatively, determining general properties of solution without concern for exact be-
havior.

In this course, we will emphasize analytic methods, but Qualitative and numerical
techniques will be left to other courses.

2 Introduction

An ordinary differential equation (ODE) is an equation involving an unknown function
of one variable and some its derivatives, while a partial differntial equation (PDE) can
be defined as is an equation involving an unkown function of two or more variables and
certian of its partial derivatives.

Examples
1- The equation

du

dt
= y2, (2.1)
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where u : R −→ R, is an ODE .
2- The equation

∂u

∂t
=
∂2y

∂x2
,

where u : R2 −→ R, is a PDE.

Remark 2.1. in the ODEs we may refer for simplisity dy
dt

= yt or y
′
, therefore equation

(2.1) can be rewrittin in this way
y

′
= y2.

Definition 2.2. The order of any differential equation is the order highest derivative
which appears in the equation.

Definition 2.3. For any diffferential equation, we say that it is linear when it is lin-
ear with respect to the dependent variable y, otherwise we say that the equation is
nonlinear.

Examples
1-

y
′′

+ y
′
+ y = sinx, is a second order linear ODE.

2-
y

′
+ y2 = 0, is a first order nonlinear ODE

3-
∂y

∂t
=
∂2y

∂x2
, is a second order linear PDE

Definition 2.4. The function y = y(t), is called is a solution to a ODE on the open
interval I, if it satisfies the equation and defined on I.

Example
it is easy to see that the function

y =
1

(c− t)
, (2.2)

is defind on R/{c}, where c ∈ R,
and satisfy of the following ODE

y
′
= y2. (2.3)

Therefore, it is a solution to this ODE on R/{c}.
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Definition 2.5. the problem of an ODE with the intial condition y(t0) = y0, is called
intial value problem (IVP).

Example consider the IVP of equation (2.3), with the intial value condition y(0) =
1, we see that y(0) = 1

(c)
= 1, thus c = 1. Therefore, the solution of this IVP takes the

form

y =
1

(1− t)
.

Exercises
1- For each of the following differential equations study the type ( ODE or PDE),

(Linear or nonlinear), and show the order.

(i) y
′
= sin(y) + t

(ii) yt = yx + et+x

(iii) cos(y
′′
) = t2

(iv) y
′′

+ y = tan(t).

2- show that the function y = ket, where k is a constant, is the solution of the
following ODE

dy

dt
= y,

and then study the solution of the IVP of this equation with the intial condition

y(0) = 2.

3 Methods for Solving First Order Equations

We will study some mothds used to find the solutions of the first order equations which
take the form

y
′
= f(y, t).

1- Separable Equations
Finding a way to separate the variables is almost always the best method to attempt

first when trying to solve a differential equation. Even if one of the methods that we
will discuss later works for a given differential equation, we will invariably end up with
the same integral to solve. Formally, a differential equation is separable if it can be
written in the form
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dy

dt
= f(y, t) = a(t)b(y)

where a, b : R −→ R are continuous functions
and the solution is ∫

dy

b(y)
=

∫
a(t)dt.

It is not always easy to determine whether or not a given differential equation is
separable. The following theorem addresses this problem.

Theorem 3.1. The differential equation y
′
= f(y, t), is separable if and only if

f(t, y)
∂2f

∂t∂y
=
∂f

∂t

∂f

∂y
.

Example
Determine if y

′
= 1 + t2 + y3 + t2y3, is separable

Setting f(t, y) = 1 + t2 + y3 + t2y3 and taking the necessary partial derivatives,

∂f

∂t
= 2t+ 2ty3,

∂f

∂y
= 3y2 + 3t2y2,

Hence

∂f

∂t

∂f

∂y
= 6ty2 + 6t3y2 + 6ty5 + 6t3y5.

and

f(t, y)
∂2f

∂t∂y
= 6ty2 + 6t3y2 + 6ty5 + 6t3y5 =

∂f

∂t

∂f

∂y

Consequently, the differential equation is separable.
Exercise For the equation in the last example, find a formula for the solution.

Example
Find the solution of the following equation

y
′
= y sin(t).

4



Dr. Maan A Rasheed Ordinary Differential Equations, 2013

It is clear that this equation is separable, and it can be written as following

dy

y
= sin(t)dt

integrate the two sides, it follows that

ln(y) = − cos(t) + c,

thus

y = e− cos(t)ec.

set k = ec, we get

y = ke− cos(t).

2- Homogeneous Equations
An ordinary differential equation is said to be a homogeneous differential equation

if the following condition is satisfied

y
′

= f(zt, zy) = f(t, y),

for any z ∈ R.
Set y = vt, thus the general form of first order ODE becomes

y
′
=
dy

dt
=
dt(vt)

dt
= v + t

dv

dt
= f(t, vt).

Since this equation is homogenous, we can use separation of variables to solve the
equation

v
′
=
f(t, vt)− v

t
.

Example
Find the solution of the following equation

y
′
=
y2 + 2ty

t2
.

set

f(y, t) =
y2 + 2ty

t2

Clearly,

f(zt, zy) =
(zy)2 + 2(zt)(zy)

(zt)2
= f(t, y).
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Therefore, this equation is homogenuos
Now to find the solution, we set y = vt, and the equation can be written as follows

v
′
=

v2t2+2tvt
t2

− v
t

=
v2 − v
t

Thus
dt

t
=

dv

v2 + v

if you integrate the two sides, we get

ln(t) =

∫
dv

v(v + 1)
=

∫
(
A

v
+

B

v + 1
)dt

It is not difficult to see that A = 1, B = −1, thus the last equation becomes

ln(t) = ln(v)− ln(v + 1) + c = ln(
v

v + 1
) + c.

Thus
t =

v

(v + 1)
ec,

set ec = k, we get

t = k
v

v + 1
.

Thus
tv + t = kv.

i.e. v(t− k) = −t, thus

v =
y

t
=

t

k − t
Therefore,

y =
t2

(k − t)
.

as the general solution of the original differential equation.

Exercise Find the general solution of y
′
= (y/t)− 1.

3- Exact Equations
Consider the differential equation which takes the form

M(t, y)dt+N(t, y)dy = 0,
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we say that this differntial equation is exact if it catisfied this condition

∂M

∂y
=
∂N

∂t
.

To solve an Exact EquationM(t, y)dt+N(t, y)dy = 0, we have to follow the following
steps

(i) Assume that the function φ is a for t and y (the solution of the general equation),
such that

(ii) Set M(t, y) = ∂φ
∂t
, N(t, y) = ∂φ

∂y

(iii) Integrate M(t, y) = M(t, y) = ∂φ
∂t

in ti t to optain

φ(t, y) =

∫
t

M(s, y)ds+ h(y)

(iv) Calculate ∂φ
∂y

from the expression for φ(t, y) in step 2. The solution is φ(t, y) = C,
where C is a constant.

(v) Set the expression for ∂φ
∂y

obtained in step (3) equal to N(t, y) . This should give

a differential equation for h(y).

(vi) Solve for h(y).

(vii) Substitute the expression for h(y) into the expression for φ(t, y) in step (2). The
solution is φ(t, y) = C, where C is aconstant.

Example Find the solution of the following differential equation

y
′

= − y cos(t) + 2tey

sin(t) + t2ey + 2
.

We can rewrite the differential equation as

(y cos(t) + 2tey)dt = (sin(t) + t2ey + 2)dy

which has the form M(t, y)dt+N(t, y)dy = 0, where

M(t, y) = (y cos(t) + 2tey), N(t, y) = (sin(t) + t2ey + 2).

It is clear that
∂M

∂y
= cos(t) + 2tey =

∂N

∂t
.
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Assume that the function φ is a for t and the solution y of the general equation such
that

∂φ

∂t
= M(t, y) = y cot(t) + 2tey, (3.1)

∂φ

∂y
= N(t, y) = sin(t) + t2ey + 2. (3.2)

Integrate equation (3.1) over t, it follows that

φ(t, y) =

∫
(y cot(t) + 2tey)dt = y sin(t) + t2ey + h(y), (3.3)

where h is an unknown function of y.
Differentiating the last equation with respect to y and setting the result equal to

(3.2) gives

∂φ

∂y
= sin(t) + t2ey + 2 = sin(t) + t2ey + h

′
(y),

Canceling common terms of both sides of the equation gives h
′
(y) = 2 or dh = 2dy,

which leads to
h(y) = 2y + c

Thus equation (3.3) becomes

φ(t, y) = y sin(t) + t2ey + 2y + c,

Therefore, if we consider c = 0, the family for the solution of the general equation
takes the form

y sin(t) + t2ey + 2y = C,

where C is a constant.

Exercise For the equation in the last example, study the solution of the IVP ,
where y(0) = 2.

Exercise Solve (t+ 2y)dt+ (2t− y)dy = 0

4-Integrating Factors
We study now the linear equation, which takes the form

y
′
= a(t)y + b(t). (3.4)

To find the solution for this type of equation, we need to follow thr following steps
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(i) rewrite the equation in the form

dy = a(t)ydt+ b(t)dt.

(ii) Set µ = e−
∫
a(t)dt.

(iii) multiblate the equation in step 1 by µ, to get

e−
∫
a(t)dtdy = a(t)e−

∫
a(t)dtdty + b(t)e−

∫
a(t)dtdt.

(iv) we write the equation in step 3 in the form

d(e−
∫
a(t)dty) = b(t)e−

∫
a(t)dtdt.

(v) integrate the two sides of the equation in last step, we get

y = e
∫
a(t)dt

∫
b(t)e−

∫
a(t)dtdt.

Example
Find the solution of the following IVP

t3y
′
= t2y + 5, y(1) = 1.

Firstly, we need to find the solution of the differntial equation

now, we rewrite the equation in the form of (3.4),

dy

dt
=
y

t
+

5

t3
. (3.5)

set

µ = e−
∫

dt
t = e− ln(t) =

1

t
.

multiblate equation (3.5) by µ, we get

1

t
dy − dt

t2
y =

5

t4
dt.

Thus,

d(
y

t
) =

5

t4
dt.

integrate the two sides
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y

t
=
−25

t5
+ c,

Thus,
1 = y(1)/1 = −25/1 + c,

which means c = 26, therefore, the solution of the IVP takes the form

y =
−25

t4
+ 26t.

Bernoulli Equations
These equations are similar in form to equation (3.4), although they are not linear,

and have the form

y
′
= a(t)y + ynb(t), n ∈ Z, n 6= 0, 1. (3.6)

Bernoulli equations can be made linear by making the substitution

z = y1−n,

Differentiating,
dz

dt
= (1− n)y−ny

′
.

Thus

y
′
=

yn

(1− n)
z
′
.

Substituting the last equation in (reftv), gives

yn

(1− n)
z
′
= a(t)y + ynb(t),

Thus

z
′
= a(t)(1− n)z + (1− n)b(t).

which a linear equation for z can be solved by using Integrating Factors method.

Example
Solve the IBP

y
′
+ ty =

t

y3
, y(1) = 2.

This is a Bernoulli equation with n = −3, so we let
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z = y1−n = y4.

Thus z
′
= 4y3y

′
, which leads to y

′
= z

′
/(4y3).

Therefore, the oreginal differential equation becames

z
′

4y3
+ ty =

t

y3
.

Thus

z
′
+ 4tz = 4t, z(1) = y(1)4 = 24 = 16.

The integrating factor is µ = e
∫
4tdt = e2t

2
.

Multiplying the equation by µ, it follows that

e2t
2

dz + 4te2t
2

z = 4te2t
2

.

Thus
d(e2t

2

z) = 4te2t
2

dt.

Integrate the two sides to get

e2t
2

z = e2t
2

+ c,

Thus
z = 1 +

c

e2t2

Therefore,

z(1) = 16 = 1 +
c

e2
.

i.e.
c = 15e2,

so that

z = 1 +
15e2

e2t2
.

It follows that

y = z
1
4 = (1 +

15e2

e2t2
)
1
4 .
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Exercises
1- Determine if either of the following equations are separable.

y
′
= cos(t+ y) + cos(t− y), y

′
= cos(t+ y) + sin(t− y).

2- Solve the following homogeneous equations

(i) y
′
= y

t
(y
t

+ 1),

(ii) y
′
= t2−3y2

ty
,

(iii) y
′
= 3t−4y

3t+4y
,

(iv) ty
′

= y + tan(y
t
),

(v) y
′
= y

t
[ 1
ln( y

t
)
− 1].

3- Determine which of the following differential equations are exact

(t2 + ty)dt+ tydy = 0,

(2y + y2)dt− tdy = 0,

t2y3dt+ t3y2dy = 0,

(et + y)dt+ (2y + t+ yey)dy = 0.

4- Show that the following equations are exact and then solve them

xdx

(x2 + y2)3/2
+

ydy

(x2 + y2)3/2
,

dy

dx
=

y + 6x2

x(2− ln(x))
,

tdt+ ydy = 0.

, 5- Solve the IVP,

y
′
+ y = cos t, y(0) = 1.

ty
′
+ 2y = et, t > 0,

y
′ − 3

t
y = 4y−5, y(1) = 2.
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4 Methods for Solving Higher Order Linear Equa-

tions with Constant Coefficients

The general second order linear equation with constant coefficients is

ay
′′

+ by
′
+ cy = f(t), (4.1)

where a, b, and c are constants, a 6= 0, f is a function of t, if f = 0, then we say
that the equaton (4.1) is homogeneous ,

ay
′′

+ by
′
+ cy = 0, (4.2)

other wise it is called inhomogeneous equation.
The second order linear initial value problem with constant coefficients is then

ay
′′

+ by
′
+ cy = f(t), y(t0) = y0, y

′
(t0) = y1. (4.3)

Equation (4.3) is sometimes called the Cauchy initial value problem. We refer to
the solution of equation (4.1), which involves two arbitrary constants as the general
solution of the differential equation, to distinguish it from the solution of the initial
value problem (8.6), which has no arbitrary constants.

Instead of constraining the solution and its derivative at the same point t0 , it is also
possible to specify that value of the solution at two points as in the Dirichlet Problem
or boundary value problem (BVP) with Dirichlet conditions,

ay
′′

+ by
′
+ cy = f(t), y(t0) = y0, y(t1) = y1,

or to specify the value of the derivative of the solution at two points as in the
Neumann Problem, or boundary value problem with Neuman boundary conditions,

ay
′′

+ by
′
+ cy = f(t), y

′
(t0) = y0, y

′
(t1) = y1.

Also we can consider the solution and its derivative at two different points, as in
the initial-boundary value problem,

ay
′′

+ by
′
+ cy = f(t), a11y(t0) + a12y

′
(t0) = y0, a21y(t1) + a22y

′
(t1) = y1.

where a11, a12, a21 and a22 are constants. We will only study the Cauchy initial value
problem, (4.3) and will not consider any of the boundary value problems, which are
considerably more complicated.
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We use the notation yH(t) to denote the general solution of (4.2), and yP (t) to
denote any particular solution of (4.1) that is not a solution of (4.2). We will see that
there may be many different solutions to the homogeneous equation (8.10). In fact
every solution of the homogeneous equation can be written in the form

y = c1y1(t) + c2y2(t), (4.4)

where y1(t) and y2(t) are each by themselves solutions of (4.2), then we call (4.4) the
general solution of the homogeneous equation, and call the pair of functions {y1(t), y2(t)}
and fundamental set of solutions to the homogeneous equation. Then the general solu-
tion of (4.1) is

y(t) = yH(t) + yP (t).

The functions y1(t) and y2(t) must not only both be solutions of (4.2), but they
must both be linearly independent (in the sense that it is impossible to find any pair
of constants c1 and c2, both non-zero such that c1y1(t) + c2y2(t) = 0, for all t).

Example: Show that the two solutions of the homogeneous linear differential equa-
tion

y” − 7y
′
+ 12y = 0,

are y1(t) = e4t and y2(t) = e3t, and then show that y = c1y1 + c2y2, is the general
solution of this equation.

Clearly, y
′
1 = 3e3t, y

′′
1 = 9e3t, and y”1 + 7y

′
1 + 12y1 = e3t[9− 7(3) + 12] = 0,

y
′
2 = 4e4t, y

′′
2 = 16e4t, and y”2 + 7y

′
2 + 12y2 = e4t[16− 7(4) + 12] = 0.

and they are linearly independent, because if c1e
3t + c2e

4t = 0, then it should be
both of c1 = c2 = 0.

Morever,

y” + 7y
′
+ 12y = c1[y

”
1 + 7y

′

1 + 12y1] + c2[y
”
2 + 7y

′

2 + 12y2] = c1(0) + c2(0) = 0.

Examle: Find the general solution of the homogeneous linear equation

y
′′

+ 6y
′
= 0.

Let z = y
′
, yields z

′
+ 6z = 0, thus by separation of variables, we have∫

dz

z
= −

∫
6dt,

Thus
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ln z = −6t+ c1, which leads to y
′
= e−6tec1 .

Thus

dy = Ce−6tdt, where C = ec1 .

integrate again the last equation, it follows that

y = −C
6
e−6t + C2,

or

y = C1e
−6t + C2, where C1 = −C

6
.

Example Find the general solution of y
′′

+ 6y
′
= t.

Assuming that z = y
′
, then the equation becomes

z
′
+ 6z = t.

Since the last equation is linear in z, we can solve this equation using the integrating
facter and we can get that the general solution is

y = (1/12)t2 − (1/36)t+ C1e−6t + C2.

We may think about a way (different from the way which has been used in the last
two examples), to find the solution of the equation

ay
′′

+ ay
′
+ cy = f(t), (4.5)

So, we need to follow these steps:

(i) Firstly, we find the homogeneous solution, yH , we assume that y = eλt. We get
two values λ1, λ2, such that

yH = C1e
λ1 + C2e

λ2 .

(ii) Secondly, we find the inhomogeneous solution, yp,we assume that y has the same
shape of f (yp quadratic polynomial in case of f is a polynomial or yp is a circular
function in case of f is a circular function).

(iii) The general solution of the origenral equation (4.5), is y = yH + yp.
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Example: For the last example

y
′′

+ 6y
′
= t, (4.6)

find yH , and yp, and then what is the general solution?.

Assume that yH = y = eλt, which leads to y
′
= λeλt, y

′′
= λ2eλt.

Thus the homogeneous equation becomes

y
′′

+ 6y
′
= eλt[λ2 + 6λ] = 0.

Since eλt 6= 0, then λ(λ+ 6) = 0, thus λ = 0 or λ = −6. Therefore,

yH = C1e
0t + C2e

6t = C1 + C2e
6t.

Next, we assume that yp = y = at2 + bt+ c, y
′
= 2at+ b, and y

′′
= 2a.

Thus
y

′′
+ 6y

′
= 2a+ 6[2at+ b] = 2a+ 12at+ 6b = t,

So

2a+ 6b = 0, 12a = 1,

Thus a = 1/12, b = (−1/3), a = (−1/36).
Therefore, yp = (1/12)t2 − (1/3)t+ c, assume that c = 0.
Thus

y = yH + yp = C1 + C2e
6t + (1/12)t2 − (1/36)t.

Which is the general solution of (4.6).
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